Wednesday, 27 June 2012

Birth Of The Earth


How Old is the Earth?
Photo of Earth from spaceIn the very beginning of earth's history, this planet was a giant, red hot, roiling, boiling sea of molten rock - a magma ocean. The heat had been generated by the repeated high speed collisions of much smaller bodies of space rocks that continually clumped together as they collided to form this planet. As the collisions tapered off the earth began to cool, forming a thin crust on its surface. As the cooling continued, water vapor began to escape and condense in the earth's early atmosphere. Clouds formed and storms raged, raining more and more water down on the primitive earth, cooling the surface further until it was flooded with water, forming the seas.
It is theorized that the true age of the earth is about 4.6 billion years old, formed at about the same time as the rest of our solar system. The oldest rocks geologists have been able to find are 3.9 billion years old. Using radiometric dating methods to determine the age of rocks means scientists have to rely on when the rock was initially formed (as in - when its internal minerals first cooled). In the infancy of our home planet the entire earth was molten rock - a magma ocean.
Since we can only measure as far back in time as we had solid rock on this planet, we are limited in how we can measure the real age of the earth. Due to the forces of plate tectonics, our planet is also a very dynamic one; new mountains forming, old ones wearing down, volcanoes melting and reshaping new crust. The continual changing and reshaping of the earth's surface that involves the melting down and reconstructing of old rock has pretty much eliminated most of the original rocks that came with earth when it was newly formed. So the age is a theoretical age.
Scientists are still trying to unravel one of the greatest mysteries of earth: When did "life" first appear and how did it happen? It is estimated that the first life forms on earth were primitive, one-celled creatures that appeared about 3 billion years ago. That's pretty much all there was for about the next two billion years. Then suddenly those single celled organisms began to evolve into multicellular organisms. Then an unprecedented profusion of life in incredibly complex forms began to fill the oceans. Some crawled from the seas and took residence on land, perhaps to escape predators in the ocean. A cascading chain of new and increasingly differentiated forms of life appeared all over the planet, only to be virtually annihilated by an unexplained mass extinction. It would be the first of several mass extinctions in Earth's history.
Scientists have been looking increasingly to space to explain these mass extinctions that have been happening almost like clockwork since the beginning of "living" time. Perhaps we've been getting periodically belted by more space rocks (ie. asteroids), or the collision of neutron stars happening too close for comfort? Each time a mass extinction occurred, life found a way to come back from the brink. Life has tenaciously clung to this small blue planet for the last three billion years. Scientists are finding new cues as to how life first began on earth in some really interesting places - the deep ocean.
Scientists have studied rocks using radiometric dating methods to determine the age of earth. Another really cool thing they've found in rocks that tells us more about the story of earth's past are the remains of living creatures that have been embedded in the rocks for all time. We call these fossils. It has been the careful study of earth's fossil record that has revealed the exciting picture about the kinds of creatures that once roamed this planet. Fossilized skeletons of enormous creatures with huge claws and teeth, ancient ancestors of modern day species (such as sharks) that have remained virtually unchanged for millions of years, and prehistoric jungles lush with plant life, all point to a profusion of life and a variety of species that continues to populate the earth, even in the face of periodic mass extinctions.
By studying the fossil record scientists have determined that the earth has experienced very different climates in the past. In fact, general climactic conditions, as well as existing species, are used to define distinct geologic time periods in earth's history. For example, periodic warming of the earth - during the Jurassic and Cretaceous periods - created a profusion of plant and animal life that left behind generous organic materials from their decay. These layers of organic material built up over millions of years undisturbed. They were eventually covered by younger, overlying sediment and compressed, giving us fossil fuels such as coal, petroleum and natural gas.
Alternately, the earth's climate has also experienced periods of extremely cold weather for such prolonged periods that much of the surface was covered in thick sheets of ice. These periods of geologic time are called ice ages and the earth has had several in its history. Entire species of warmer-climate species died out during these time periods, giving rise to entirely new species of living things which could tolerate and survive in the extremely cold climate. Believe it or not, humans were around during the last ice age - the Holocene (about 11,500 years ago) - and we managed to survive. Creatures like the Woolly Mammoth - a distant relative of modern-day elephants - did not.
Read about a really exciting recent find of a perfectly-preserved, frozen Woolly Mammoth! This was a particularly exciting find because it wasn't a fossil that scientists found, but actual tissue, which still has its DNA record intact.
Also, read more about the Ice Man - another frozen tissue sample of a human being who was frozen into the high mountains of France. He was just recently discovered as thousands of years of ice pack have finally melted from around his body.

Number seven is the most common number in life, and mother earth our mother that feeds us, protects us, and faciliates all our lifes' needs must grow to seven. Since it was a blazing infant where life was absent until the next level where crust was made after it the oceans then when land was created here comes the role of the wrath of volcanos, the confer of giving a new life after a long time of pregnancy life is formed when volcanos gives life and takes life in adition of creating the next layer in this context stage. And it keep on changing to reach it ultimate level the seveth, the level of the creator in our case it's the sun when it meets the creator the life overs on this planet the earth thus has finished it's mission and journey. Now it's our time as humans to continue our own journey to be enthroned at the seventh layer too. Just like earth we keep on living and dying until we meet our creator too. Human's and earth's soul are immortal, eath that soul knows how to give life so it will be promoted to give life for a new planet and we will follow our mother. As planets are moving closer to the sun planets will be down one by one and we will keep on running to the another until we meet the ultimate creator mabye.

Supernova


Supernova



Crab supernova
A supernova is an explosion of a massive supergiant star. It may shine with the brightness of 10 billion suns! The total energy output may be 1044 joules, as much as the total output of the sun during its 10 billion year lifetime. The likely scenario is that fusion proceeds to build up a core of iron. The "iron group" of elements around mass number A=60 are the most tightly bound nuclei, so no more energy can be gotten from nuclear fusion.
In fact, either the fission or fusion of iron group elements will absorb a dramatic amount of energy - like the film of a nuclear explosion run in reverse. If the temperature increase from gravitational collapse rises high enough to fuse iron, the almost instantaneous absorption of energy will cause a rapid collapse to reheat and restart the process. Out of control, the process can apparently occur on the order of seconds after a star lifetime of millions of years. Electrons and protons fuse into neutrons, sending out huge numbers of neutrinos. The outer layers will be opaque to neutrinos, so the neutrino shock wave will carry matter with it in a cataclysmic explosion.


Supernovae are classified as Type I or Type II depending upon the shape of their light curves and the nature of their spectra.


The synthesis of the heavy elements is thought to occur in supernovae, that being the only mechanism which presents itself to explain the observed abundances of heavy elements.
I







Type I and Type II Supernova

Supernovae are classified as Type I if their light curves exhibit sharp maxima and then die away gradually. The maxima may be about 10 billion solar luminosities. Type II supernovae have less sharp peaks at maxima and peak at about 1 billion solar luminosities. They die away more sharply than the Type I. Type II supernovae are not observed to occur in elliptical galaxies, and are thought to occur in Population I type stars in the spiral arms of galaxies. Type I supernovae occur typically in elliptical galaxies, so they are probably Population II stars.


With the observation of a number of supernova in other galaxies, a more refined classification of supernovae has been developed based on the observed spectra. They are classified as Type I if they have no hydrogen lines in their spectra. The subclass type Ia refers to those which have a strong silicon line at 615 nm. They are classified as Ib if they have strong helium lines, and Ic if they do not. Type II supernovae have strong hydrogen lines. These spectral features are illustrated below for specific supernovae.


Supernovae are classified as Type I if their light curves exhibit sharp maxima and then die away smoothly and gradually. The model for the initiation of a Type I supernova is the detonation of a carbon white dwarf when it collapses under the pressure of electron degeneracy. It is assumed that the white dwarf accretes enough mass to exceed the Chandrasekhar limit of 1.4 solar masses for a white dwarf. The fact that the spectra of Type I supernovae are hydrogen poor is consistent with this model, since the white dwarf has almost no hydrogen. The smooth decay of the light is also consistent with this model since most of the energy output would be from the radioactive decay of the unstable heavy elements produced in the explosion.
Type II supernovae are modeled as implosion-explosion events of a massive star. They show a characteristic plateau in their light curves a few months after initiation. This plateau is reproduced by computer models which assume that the energy comes from the expansion and cooling of the star's outer envelope as it is blown away into space. This model is corroborated by the observation of strong hydrogen and helium spectra for the Type II supernovae, in contrast to the Type I. There should be a lot of these gases in the extreme outer regions of the massive star involved.
Type II supernovae are not observed to occur in elliptical galaxies, and are thought to occur inPopulation I type stars in the spiral arms of galaxies. Type Ia supernovae occur in all kinds of galaxies, whereas Type Ib and Type Ic have been seen only in spiral galaxies near sites of recent star formation (H II regions). This suggests that Types Ib and Ic are associated with short-lived massive stars, but Type Ia is significantly different. .












Type Of Supernova

Type Ia supernovae have become very important as the most reliable distance measurement at cosmological distances, useful at distances in excess of 1000 Mpc.


One model for how a Type Ia supernova is produced involves the accretion of material to a white dwarf from an evolving star as a binary partner. If the accreted mass causes the white dwarf mass to exceed the Chandrasekhar limit of 1.44 solar masses, it will catastrophically collapse to produce the supernova. Another model envisions a binary system with a white dwarf and another white dwarf or a neutron star, a so-called "doubly degenerate" model. As one of the partners accretes mass, it follows what Perlmutter calls a "slow, relentless approach to a cataclysmic conclusion" at 1.44 solar masses. A white dwarf involves electron degeneracy and a neutron star involves neutron degeneracy.


A critical aspect of these models is that they imply that a Type Ia supernova happens when the mass passes the Chandrasekhar threshold of 1.44 solar masses, and therefore all start at essentially the same mass. One would expect that the energy output of the resulting detonation would always be the same. It is not quite that simple, but they seem to have light curves that are closely related, and can be related to a common template.
Carroll and Ostlie summarize the character of a Type Ia supernova with the statement that at maximum light they reach an average maximum magnitude in the blue and visible wavelength bands of


with a typical spread of less than about 0.3 magnitudes. Their light curves vary in a systematic way: the peak brightnesses and their subsequent rate of decay are inversely proportional.


The above illustration is a qualitative sketch of the data reported by Perlmutter, Physics Today 56, No.4, 53, 2003. It illustrates the results of careful study of supernova Type Ia light curves which has led to two approaches for standardizing those curves. The above curves illustrate the "stretch method" in which the curves have been stretched or compressed in time, and the standardized peak magnitude determined by the stretch factor. With such a stretch, all the observed curves on the left converge to the template curve on the right with very little scatter. Another method for standardizing the curves is called the multicolor light curve shapes (MCLS) method. It compares the light curves to a family of parameterized light curves to give the absolute magnitude of the supernova at maximum brightness. The MCLS method allows the reddening and dimming effect of interstellar dust to be detected and removed.Carroll and Ostlie give as an example of distance determination the Type Ia supernova SN 1963p in the galaxy NGC 1084 which had a measured apparent blue magnitude of B = m = 14.0 at peak brilliance. There was a measured extinction of A = 0.49 magnitude. Using the template maximum of M=19.6 as a standard candle gives a distance to the supernova


Distance uncertainties for Type Ia supernovae are thought to approach 5% or an uncertainty of just 0.1 magnitude in the distance modulus, m-M.

How Time Travel Works


From millennium-skipping Victorians to phone booth-hopping teenagers, the termtime travel often summons our most fantastic visions of what it means to move through the fourth dimension. But of course you don't need a time machine or a fancy wormhole to jaunt through the years.
As you've probably noticed, we're all constantly engaged in the act of time travel. At its most basic level, time is the rate of change in the universe -- and like it or not, we are constantly undergoing change. We age, the planets move around the sun, and things fall apart.
We measure the passage of time in seconds, minutes, hours and years, but this doesn't mean time flows at a constant rate. Just as the water in a river rushes or slows depending on the size of the channel, time flows at different rates in different places. In other words, time is relative.
But what causes this fluctuation along our one-way trek from the cradle to the grave? It all comes down to the relationship between time and space. Human beings frolic about in the three spatial dimensions of length, width and depth. Time joins the party as that most crucial fourth dimension. Time can't exist without space, and space can't exist without time. The two exist as one: the space-time continuum. Any event that occurs in the universe has to involve both space and time.
In this article, we'll look at the real-life, everyday methods of time travel in our universe, as well as some of the more far-fetched methods of dancing through the fourth dimension.



Time Travel Into the Future

If you want to advance through the years a little faster than the next person, you'll need to exploit space-time. Global positioning satellites pull this off every day, accruing an extra third-of-a-billionth of a second daily. Time passes faster in orbit, because satellites are farther away from the mass of the Earth. Down here on the surface, the planet's mass drags on time and slows it down in small measures.
We call this effect gravitational time dilation. According to Einstein's theory of general relativity, gravity is a curve in space-time and astronomers regularly observe this phenomenon when they study light moving near a sufficiently massive object. Particularly large suns, for instance, can cause an otherwise straight beam of light to curve in what we call the gravitational lensing effect.
What does this have to do with time? Remember: Any event that occurs in the universe has to involve both space and time. Gravity doesn't just pull on space; it also pulls on time.  
You wouldn't be able to notice minute changes in the flow of time, but a sufficiently massive object would make a huge difference -- say, like the supermassive black hole Sagittarius A at the center of our galaxy. Here, the mass of 4 million suns exists as a single, infinitely dense point, known as a singularity [source:NASA]. Circle this black hole for a while (without falling in) and you'd experience time at half the Earth rate. In other words, you'd round out a five-year journey to discover an entire decade had passed on Earth [source: Davies].
Speed also plays a role in the rate at which we experience time. Time passes more slowly the closer you approach the unbreakable cosmic speed limit we call the speed of light. For instance, the hands of a clock in a speeding train move more slowly than those of a stationary clock. A human passenger wouldn't feel the difference, but at the end of the trip the speeding clock would be slowed by billionths of a second. If such a train could attain 99.999 percent of light speed, only one year would pass onboard for every 223 years back at the train station [source: Davies].
In effect, this hypothetical commuter would have traveled into the future. But what about the past? Could the fastest starship imaginable turn back the clock?



Black Holes and Kerr Rings

Circle a black hole long enough, and gravitational time dilation will take you into the future. But what would happen if you flew right into the maw of this cosmic titan? Most scientists agree the black hole would probably crush you, but one unique variety of black hole might not: theKerr black hole or Kerr ring.
In 1963, New Zealand mathematician Roy Kerr proposed the first realistic theory for a rotating black hole. The concept hinges on neutron stars, which are massive collapsed stars the size of Manhattan but with the mass of Earth's sun [source: Kaku]. Kerr postulated that if dying stars collapsed into a rotating ring of neutron stars, their centrifugal force would prevent them from turning into a singularity. Since the black hole wouldn't have a singularity, Kerr believed it would be safe to enter without fear of the infinite gravitational force at its center.
If Kerr black holes exist, scientists speculate that we might pass through them and exit through a white hole. Think of this as the exhaust end of a black hole. Instead of pulling everything into its gravitational force, the white hole would push everything out and away from it -- perhaps into another time or even another universe.
Kerr black holes are purely theoretical, but if they do exist they offer the adventurous time traveler a one-way trip into the past or future. And while a tremendously advanced civilization might develop a means of calibrating such a method of time travel, there's no telling where or when a "wild" Kerr black hole might leave you.


Wormholes

Theoretical Kerr black holes aren't the only possible cosmic shortcut to the past or future. As made popular by everything from "Star Trek: Deep Space Nine" to "Donnie Darko," there's also the equally theoretical Einstein-Rosen bridgeto consider. But of course you know this better as a wormhole.
Einstein's general theory of relativity allows for the existence of wormholes since it states that any mass curves space-time. To understand this curvature, think about two people holding a bedsheet up and stretching it tight. If one person were to place a baseball on the bedsheet, the weight of the baseball would roll to the middle of the sheet and cause the sheet to curve at that point. Now, if a marble were placed on the edge of the same bedsheet it would travel toward the baseball because of the curve.
In this simplified example, space is depicted as a two-dimensional plane rather than a four-dimensional one. Imagine that this sheet is folded over, leaving a space between the top and bottom. Placing the baseball on the top side will cause a curvature to form. If an equal mass were placed on the bottom part of the sheet at a point that corresponds with the location of the baseball on the top, the second mass would eventually meet with the baseball. This is similar to how wormholes might develop.
In space, masses that place pressure on different parts of the universe could combine eventually to create a kind of tunnel. This tunnel would, in theory, join two separate times and allow passage between them. Of course, it's also possible that some unforeseen physical or quantum property prevents such a wormhole from occurring. And even if they do exist, they may be incredibly unstable.
According to astrophysicist Stephen Hawking, wormholes may exist in quantum foam, the smallest environment in the universe. Here, tiny tunnels constantly blink in and out of existence, momentarily linking separate places and time like an ever-changing game of "Chutes and Ladders."
Wormholes such as these might prove too small and too brief for human time travel, but might we one day learn to capture, stabilize and enlarge them? Certainly, says Hawking, provided you're prepared for some feedback. If we were to artificially prolong the life of a tunnel through folded space-time, a radiation feedback loop might occur, destroying the time tunnel in the same way audio feedback can wreck a speaker.


Cosmic String


We've blown through black holes and wormholes, but there's yet another possible means of time traveling via theoretic cosmic phenomena. For this scheme, we turn to physicist J. Richard Gott, who introduced the idea of cosmic string back in 1991. As the name suggests, these are stringlike objects that some scientists believe were formed in the early universe.
These strings may weave throughout the entire universe, thinner than an atom and under immense pressure. Naturally, this means they'd pack quite a gravitational pull on anything that passes near them, enabling objects attached to a cosmic string to travel at incredible speeds and benefit from time dilation. By pulling two cosmic strings close together or stretching one string close to a black hole, it might be possible to warp space-time enough to create what's called a closed timelike curve.
Using the gravity produced by the two cosmic strings (or the string and black hole), a spaceship theoretically could propel itself into the past. To do this, it would loop around the cosmic strings.
Quantum strings are highly speculative, however. Gott himself said that in order to travel back in time even one year, it would take a loop of string that contained half the mass-energy of an entire galaxy. In other words, you'd have to split half the atoms in the galaxy to power your time machine. And, as with any time machine, you couldn't go back farther than the point at which the time machine was created.
Oh yes, and then there are the time paradoxes.







Einstein's Spacetime



Was Newton right and Einstein wrong? It seems that unzipping the fabric of spacetime and harking back to 19th-century notions of time could lead to a theory of quantum gravity.

Physicists have struggled to marry quantum mechanics with gravity for decades. In contrast, the other forces of nature have obediently fallen into line. For instance, the electromagnetic force can be described quantum-mechanically by the motion of photons. Try and work out the gravitational force between two objects in terms of a quantum graviton, however, and you quickly run into trouble—the answer to every calculation is infinity. But now Petr HoÅ™ava, a physicist at the University of California, Berkeley, thinks he understands the problem. It’s all, he says, a matter of time.
More specifically, the problem is the way that time is tied up with space in Einstein’s theory of gravity: general relativity. Einstein famously overturned the Newtonian notion that time is absolute—steadily ticking away in the background. Instead he argued that time is another dimension, woven together with space to form a malleable fabric that is distorted by matter. The snag is that in quantum mechanics, time retains its Newtonian aloofness, providing the stage against which matter dances but never being affected by its presence. These two conceptions of time don’t gel.
The solution, HoÅ™ava says, is to snip threads that bind time to space at very high energies, such as those found in the early universe where quantum gravity rules. “I’m going back to Newton’s idea that time and space are not equivalent,” HoÅ™ava says. At low energies, general relativity emerges from this underlying framework, and the fabric of spacetime restitches, he explains.
HoÅ™ava likens this emergence to the way some exotic substances change phase. For instance, at low temperatures liquid helium’s properties change dramatically, becoming a “superfluid” that can overcome friction. In fact, he has co-opted the mathematics of exotic phase transitions to build his theory of gravity. So far it seems to be working: the infinities that plague other theories of quantum gravity have been tamed, and the theory spits out a well-behaved graviton. It also seems to match with computer simulations of quantum gravity.
HoÅ™ava’s theory has been generating excitement since he proposed it in January, and physicists met to discuss it at a meeting in November at the Perimeter Institute for Theoretical Physics in Waterloo, Ontario. In particular, physicists have been checking if the model correctly describes the universe we see today. General relativity scored a knockout blow when Einstein predicted the motion of Mercury with greater accuracy than Newton’s theory of gravity could.
Can Hořřava gravity claim the same success? The first tentative answers coming in say “yes.” Francisco Lobo, now at the University of Lisbon, and his colleagues have found a good match with the movement of planets.
Others have made even bolder claims for HoÅ™ava gravity, especially when it comes to explaining cosmic conundrums such as the singularity of the big bang, where the laws of physics break down. If HoÅ™ava gravity is true, argues cosmologist Robert Brandenberger of McGill University in a paper published in the August Physical Review D, then the universe didn’t bang—it bounced. “A universe filled with matter will contract down to a small—but finite—size and then bounce out again, giving us the expanding cosmos we see today,” he says. Brandenberger’s calculations show that ripples produced by the bounce match those already detected by satellites measuring the cosmic microwave background, and he is now looking for signatures that could distinguish the bounce from the big bang scenario.
HoÅ™ava gravity may also create the “illusion of dark matter,” says cosmologist Shinji Mukohyama of Tokyo University. In the September Physical Review D, he explains that in certain circumstances HoÅ™ava’s graviton fluctuates as it interacts with normal matter, making gravity pull a bit more strongly than expected in general relativity. The effect could make galaxies appear to contain more matter than can be seen. If that’s not enough, cosmologist Mu-In Park of Chonbuk National University in South Korea believes that HoÅ™ava gravity may also be behind the accelerated expansion of the universe, currently attributed to a mysterious dark energy. One of the leading explanations for its origin is that empty space contains some intrinsic energy that pushes the universe outward. This intrinsic energy cannot be accounted for by general relativity but pops naturally out of the equations of HoÅ™ava gravity, according to Park.

HoÅ™ava’s theory, however, is far from perfect. Diego Blas, a quantum gravity researcher at the Swiss Federal Institute of Technology (EPFL) in Lausanne has found a “hidden sickness” in the theory when double-checking calculations for the solar system. Most physicists examined ideal cases, assuming, for instance, that Earth and the sun are spheres, Blas explains: “We checked the more realistic case, where the sun is almost a sphere, but not quite.” General relativity pretty much gives the same answer in both the scenarios. But in HoÅ™ava gravity, the realistic case gives a wildly different result.
Along with Sergei M. Sibiryakov, also at EPFL, and Oriol Pujolas of CERN near Geneva, Blas has reformulated HoÅ™ava gravity to bring it back into line with general relativity. Sibiryakov presented the group’s model in September at a meeting in Talloires, France.
HoÅ™ava welcomes the modifications. “When I proposed this, I didn’t claim I had the final theory,” he says. “I want other people to examine it and improve it.”
Gia Dvali, a quantum gravity expert at CERN, remains cautious. A few years ago he tried a similar trick, breaking apart space and time in an attempt to explain dark energy. But he abandoned his model because it allowed information to be communicated faster than the speed of light.
“My intuition is that any such models will have unwanted side effects,” Dvali thinks. “But if they find a version that doesn’t, then that theory must be taken very seriously.”

Our Planets

Image: Artful rearrangement of the solar system






Solar System Montage



This montage of Voyager spacecraft pictures shows the eight planets, plus four of Jupiter's moons, sprawled against the backdrop of the Rosette Nebula and on the horizon of Earth's moon. In addition to the planets and moons seen in this simulated photo, our solar system contains a star, asteroids and comets, and dwarf planets such as Pluto.




Photo: Mars as seen from the Hubble Telescope


Though one of our nearest neighbors, Mars is still 43 million miles (69 million kilometers) from Earth, illustrating the nearly incomprehensible vastness of our solar system. Scientists are working to unravel the mystery of Mars's climate—evidence of water on the red planet will hold clues about life on Mars, as well as the potential for life elsewhere in the universe.



Photo: An aurora on Saturn


Streams of charged particles blasted from the sun collide with Saturn's magnetic field, creating an aurora on the planet's south pole. Unlike Earth's relatively short-lived auroras, Saturn's can last for days. Scientists combined ultraviolet images of the auroras, taken by Hubble over a period of days, with visible-light images of the ringed planet. In this view the aurora appears blue because of the ultraviolet camera, but a Saturn-based observer would see red light flashes.



Photo: Dwarf planet Pluto and its moons


nce classified as a true planet, icy Pluto is now considered one of the more than 40 dwarf planets in our solar system. Seen here with its three known moons, Charon, Nix, and Hydra, Pluto is a member of a group of objects that orbit in a disklike zone beyond the orbit of Neptune called the Kuiper belt.

Photo: Jupiter


Named after the king of the Roman gods, Jupiter is the giant of our solar system. Its stripes are dark belts and light zones created by strong east-west winds in the planet's upper atmosphere. Within these areas are huge storm systems that have raged for years. The Great Red Spot, one such giant spinning storm, has existed for at least three centuries.


Photo: Total solar eclipse


The sun's outermost region, called the corona, shines like a halo around the moon during a total solar eclipse. Such eclipses occur when a new moon passes in front of the sun. They don't happen often—only about once a year—since the tilted orbits of the sun, moon, and Earth make their alignment rare. Total solar eclipses are of special interest to astronomers because it is the only time the sun's corona can be seen from the Earth's surface.



Image: Planets pictured in a row

This montage of photos, taken by various NASA spacecraft, shows the order of planets in the solar system. Mercury, the closest planet to the sun, is at the top, followed by Venus, Earth (with its moon), Mars, Jupiter, Saturn, Uranus, and Neptune.





Sun and Planet Summary



The following table lists statistical information for the Sun and planets:




Distance
(AU)
Radius
(Earth's)
Mass
(Earth's)
Rotation
(Earth's)
# MoonsOrbital
Inclination
Orbital
Eccentricity
ObliquityDensity
(g/cm3)
Sun0109332,80025-36*9---------1.410
Mercury0.390.380.0558.8070.20560.1°5.43
Venus0.720.950.8924403.3940.0068177.4°5.25
Earth1.01.001.001.0010.0000.016723.45°5.52
Mars1.50.530.111.02921.8500.093425.19°3.95
Jupiter5.2113180.411161.3080.04833.12°1.33
Saturn9.59950.428182.4880.056026.73°0.69
Uranus19.24170.748150.7740.046197.86°1.29
Neptune30.14170.80281.7740.009729.56°1.64
Pluto39.50.180.0020.267117.150.2482119.6°2.03


* The Sun's period of rotation at the surface varies from approximately 25 days at the equator to 36 days at the poles. Deep down, below the convective zone, everything appears to rotate with a period of 27 days.



Black Holes










1. What is a black hole?
A black hole is defined by the escape velocity that would have to be attained to escape from the gravitational pull exerted upon an object. For example, the escape velocity of earth is equal to 11 km/s. Anything that wants to escape earth's gravitational pull must go at least 11 km/s, no matter what the thing is — a rocket ship or a baseball. The escape velocity of an object depends on how compact it is; that is, the ratio of its mass to radius. A black hole is an object so compact that, within a certain distance of it, even the speed of light is not fast enough to escape.


2. How is a stellar black hole created?
A common type of black hole is the type produced by some dying stars. A star with a mass greater than 20 times the mass of our Sun may produce a black hole at the end of its life. In the normal life of a star there is a constant tug of war between gravity pulling in and pressure pushing out. Nuclear reactions in the core of the star produce enough energy to push outward. For most of a star's life, gravity and pressure balance each other exactly, and so the star is stable. However, when a star runs out of nuclear fuel, gravity gets the upper hand and the material in the core is compressed even further. The more massive the core of the star, the greater the force of gravity that compresses the material, collapsing it under its own weight. For small stars, when the nuclear fuel is exhausted and there are no more nuclear reactions to fight gravity, the repulsive forces among electrons within the star eventually create enough pressure to halt further gravitational collapse. The star then cools and dies peacefully. This type of star is called the "white dwarf." When a very massive star exhausts its nuclear fuel it explodes as a supernova. The outer parts of the star are expelled violently into space, while the core completely collapses under its own weight.
To create a massive core a progenitor (ancestral) star would need to be at least 20 times more massive than our Sun. If the core is very massive (approximately 2.5 times more massive than the Sun), no known repulsive force inside a star can push back hard enough to prevent gravity from completely collapsing the core into a black hole. Then the core compacts into a mathematical point with virtually zero volume, where it is said to have infinite density. This is referred to as a singularity. When this happens, escape would require a velocity greater than the speed of light. No object can reach the speed of light. The distance from the black hole at which the escape velocity is just equal to the speed of light is called the event horizon. Anything, including light, that passes across the event horizon toward the black hole is forever trapped.


3. Since light has no mass how can it be trapped by the gravitational pull of a black hole?
Newton thought that only objects with mass could produce a gravitational force on each other. Applying Newton's theory of gravity, one would conclude that since light has no mass, the force of gravity couldn't affect it. Einstein discovered that the situation is a bit more complicated than that. First he discovered that gravity is produced by a curved space-time. Then Einstein theorized that the mass and radius of an object (its compactness) actually curves space-time. Mass is linked to space in a way that physicists today still do not completely understand. However, we know that the stronger the gravitational field of an object, the more the space around the object is curved. In other words, straight lines are no longer straight if exposed to a strong gravitational field; instead, they are curved. Since light ordinarily travels on a straight-line path, light follows a curved path if it passes through a strong gravitational field. This is what is meant by "curved space," and this is why light becomes trapped in a black hole. In the 1920's Sir Arthur Eddington proved Einstein's theory when he observed starlight curve when it traveled close to the Sun. This was the first successful prediction of Einstein's General Theory of Relativity.
One way to picture this effect of gravity is to imagine a piece of rubber sheeting stretched out. Imagine that you put a heavy ball in the center of the sheet. The weight of the ball will bend the surface of the sheet close to it. This is a two-dimensional picture of what gravity does to space in three dimensions. Now take a little marble and send it rolling from one side of the rubber sheet to the other. Instead of the marble taking a straight path to the other side of the sheet, it will follow the contour of the sheet that is curved by the weight of the ball in the center. This is similar to how the gravitation field created by an object (the ball) affects light (the marble).

4. What does a black hole look like?
A black hole itself is invisible because no light can escape from it. In fact, when black holes were first hypothesized they were called "invisible stars." If black holes are invisible, how do we know they exist? This is exactly why it is so difficult to find a black hole in space! However, a black hole can be found indirectly by observing its effect on the stars and gas close to it. For example, consider a double-star system in which the stars are very close. If one of the stars explodes as a supernova and creates a black hole, gas and dust from the companion star might be pulled toward the black hole if the companion wanders too close. In that case, the gas and dust are pulled toward the black hole and begin to orbit around the event horizon and then orbit the black hole. The gas becomes heavily compressed and the friction that develops among the atoms converts the kinetic energy of the gas and dust into heat, and x-rays are emitted. Using the radiation coming from the orbiting material, scientists can measure its heat and speed. From the motion and heat of the circulating matter, we can infer the presence of a black hole. The hot matter swirling near the event horizon of a black hole is called an accretion disk.
John Wheeler, a prominent theorist, compared observing these double-star systems to watching women in white dresses dancing with men in black tuxedos within a dimly lit ballroom. You see only the women, but you could predict the existence of their invisible partners because of the women's' spinning and whirling motions around a central axis. Searching for stars whose motions are influenced by invisible partners is one way in which astronomers search for possible black holes.


5. Is a black hole a giant cosmic vacuum cleaner?
The answer to this question is "not really." To understand this, first consider why the force of gravity is so strong close to a black hole. The gravity of a black hole is not special. It does not attract matter at large distances differently than any other object does. At a long distance from the black hole the force of gravity falls off as the inverse square of the distance, just as it does for normal objects.
Mathematically, the gravity of any spherical object behaves as if all the mass were concentrated at one central point. Since most ordinary objects have surfaces, you will feel the strongest gravity of an object when you are on its surface. This is as close to its total mass as you can get. If you penetrated a spherical object with a constant mass density, getting closer to its core, you would feel the force of gravity get weaker, not stronger. The force of gravity you feel depends on the mass that is interior to you, because the gravity from the mass behind you is exactly canceled by the mass in the opposite direction. Therefore, you will feel the strongest force of gravity from an object, for example a planet, when you are standing on the planet's surface, because it is on the surface that you are closest to its total mass. Penetrating the surface of the planet does not expose you to more of the planet's total mass, but actually exposes you to less of its mass. Now remember the size of a black hole is infinitesimally small. Gravity near a black hole is very strong because objects can get extremely close to it and still be exposed to its total mass.
There is nothing special about the mass of a black hole. A black hole is different from our ordinary experience not because of its mass, but because its radius has vanished. Far away from the black hole, you would feel the same strength of gravity as if the black hole were a normal star. But the force of gravity close to a black hole is enormously strong because you can get so close to its total mass!
For example, the surface of the Earth where we are standing is 6378 km from the center of the Earth. The surface is as close as you can get and still be exposed to the total mass of the Earth. Thus, it is where you will feel the strongest gravity. If suddenly the Earth became a black hole (impossible!) and you remained at 6378 km from the new Earth-black hole, you would feel the same pull of gravity as you do today. For example, if you normally weigh 120 lbs, you would still weigh 120 lbs. The mass of the Earth hasn't changed, your distance from it hasn't changed, and therefore you would experience the same gravitational force as you feel on the surface of normal Earth. But with the Earth-black hole, it would be possible for you to get closer to the total mass of the Earth. Let's say that you weigh 120 lbs standing on the surface of normal Earth. As you venture closer toward the Earth-black hole you would feel a stronger and stronger force. If you went to within 3189 km (half the radius of normal Earth) of the Earth-black hole you would weigh 480 lbs! For the same exercise with the Earth as we normally experience it, if you dug your way to 3189 km of the center, you would weigh less than at the surface, a mere 60 lbs, because there would be less Earth mass interior relative to you!
As another example, consider the Sun. If the Sun suddenly became a black hole (equally impossible!), the Earth would continue on its normal orbit and would feel the same force of gravity from the Sun as usual!
Therefore, to be "sucked up" by a black hole, you have to get very close; otherwise, you experience the same force of gravity as if the black hole were the normal star it used to be. As you get close to a black hole, relativistic effects become important; for example, the escape velocity approximates and eventually reaches the speed of light and some very strange things like the "event horizon effect" begin to happen. For details, consult any popular book on black holes.


6. Do all stars become black holes?
Only stars with very large masses can become black holes. Our Sun, for example, is not massive enough to become a black hole. Four billion years from now when the Sun runs out of the available nuclear fuel in its core, our Sun will die a quiet death. Stars of this type end their history as white dwarf stars. More massive stars, such as those with masses of over 20 times our Sun's mass, may eventually create a black hole. When a massive star runs out of nuclear fuel it can no longer sustain its own weight and begins to collapse. When this occurs the star heats up and some fraction of its outer layer, which often still contains some fresh nuclear fuel, activates the nuclear reaction again and explodes in what is called a supernova. The remaining innermost fraction of the star, the core, continues to collapse. Depending on how massive the core is, it may become either a neutron star and stop the collapse or it may continue to collapse into a black hole. The dividing mass of the core, which determines its fate, is about 2.5 solar masses. It is thought that to produce a core of 2.5 solar masses the ancestral star should begin with over 20 solar masses. A black hole formed from a star is called a stellar black hole.


7. How many types of black holes are there?
According to theory, there might be three types of black holes: stellar, supermassive, and miniature black holes — depending on their size. These black holes have also formed in different ways. Stellar black holes are described in Question 6. Supermassive black holes likely exist in the centers of most galaxies, including our own galaxy, the Milky Way. They can have a mass equivalent to billions of suns. In the outer parts of galaxies (where our solar system is located within the Milky Way) there are vast distances between stars. However, in the central region of galaxies, stars are packed very closely together. Because everything in the central region is tightly packed to start with, a black hole in the center of a galaxy can become more and more massive as stars orbiting the event horizon can ultimately be captured by gravitational attraction and add their mass to the black hole. By measuring the velocity of stars orbiting close to the center of a galaxy, we can infer the presence of a supermassive black hole and calculate its mass. Perpendicular to the accretion disk of a supermassive black hole, there are sometimes two jets of hot gas. These jets can be millions of light years in length. They are probably caused by the interaction of gas particles with strong, rotating magnetic fields surrounding the black hole. Observations with the Hubble Space Telescope have provided the best evidence to date that supermassive black holes exist.
The exact mechanisms that result in what are known as miniature black holes have not been precisely identified, but a number of hypotheses have been proposed. The basic idea is that miniature black holes might have been formed shortly after the "Big Bang," which is thought to have started the Universe about 15 billion years ago. Very early in the life of the Universe the rapid expansion of some matter might have compressed slower-moving matter enough to contract into black holes. Some scientists hypothesize that black holes can theoretically "evaporate" and explode. The time required for the "evaporation" would depend upon the mass of the black hole. Very massive black holes would need a time that is longer than the current accepted age of the universe. Only miniature black holes are thought to be capable of evaporation within the existing time of our universe. For a black hole formed at the time of the "Big Bang" to evaporate today its mass must be about 1015g (i.e., about 2 trillion pounds), a little more than twice the mass of the current Homo sapien population on planet Earth. During the final phase of the "evaporation," such a black hole would explode with a force of several trillion times that of our most powerful nuclear weapon. So far, however, there is no observational evidence for miniature black holes.


8. When were black holes first theorized?
Using Newton's Laws in the late 1790s, John Michell of England and Pierre LaPlace of France independently suggested the existence of an "invisible star." Michell and LaPlace calculated the mass and size — which is now called the "event horizon" — that an object needs in order to have an escape velocity greater than the speed of light. In 1967 John Wheeler, an American theoretical physicist, applied the term "black hole" to these collapsed objects.


9. What evidence do we have for the existence of black holes?
Astronomers have found convincing evidence for a supermassive black hole in the center of the giant elliptical galaxy M87, as well as in several other galaxies. The discovery is based on velocity measurements of a whirlpool of hot gas orbiting the black hole. In 1994, Hubble Space Telescope data produced an unprecedented measurement of the mass of an unseen object at the center of M87. Based on the kinetic energy of the material whirling about the center (as in Wheeler's dance, see Question 4 above), the object is about 3 billion times the mass of our Sun and appears to be concentrated into a space smaller than our solar system.
For many years x-ray emission from the double-star system Cygnus X-1 convinced many astronomers that the system contains a black hole. With more precise measurements available recently, the evidence for a black hole in Cygnus X-1 is very strong.


10. How does the Hubble Space Telescope search for black holes?
A black hole cannot be viewed directly because light cannot escape it. Effects on the matter that surrounds it infer its presence. Matter swirling around a black hole heats up and emits radiation that can be detected. Around a stellar black hole this matter is composed of gas and dust. Around a supermassive black hole in the center of a galaxy the swirling disk is made of not only gas but also stars. An instrument aboard the Hubble Space Telescope, called the Space Telescope Imaging Spectrograph (STIS), was installed in February 1997. STIS is the space telescope's main "black hole hunter." A spectrograph uses prisms or diffraction gratings to split the incoming light into its rainbow pattern. The position and strength of the line in a spectrum gives scientists valuable information. STIS spans ultraviolet, visible, and near-infrared wavelengths. This instrument can take a spectrum of many places at once across the center of a galaxy. Each spectrum tells scientists how fast the stars and gas are swirling at that location. With that information, the central mass that the stars are orbiting can be calculated. The faster the stars go, the more massive the central object must be.
STIS found the signature of a supermassive black hole in the center of the galaxy M84. The spectra showed a rotation velocity of 400 km/s, equivalent to 1.4 million km every hour! The Earth orbits our Sun at 30 km/s. If Earth moved as fast as 400 km/s our year would be only 27 days long!


11. What is the Advanced Camera for Surveys (ACS)?
The Advanced Camera for Surveys, which was installed in March 2002, represents the third generation of science instruments flown aboard the Hubble Space Telescope. With its wider field of view, sharper image quality, and enhanced sensitivity, the new camera doubles Hubble’s field of view and expands its capabilities significantly. Upgrading the telescope with ACS’s cutting-edge technology will make it ten times more effective and prolong its useful life. ACS is expected to outperform all previous instruments flown aboard the Hubble Space Telescope, primarily because of its expanded wavelength range. Designed to study some of the earliest activity in the universe, ACS will see in wavelengths ranging from far ultraviolet to infrared.
On the inside, the new instrument is actually a team of three different cameras each designed to perform a specific function: the wide field camera, the high-resolution camera, and the solar blind camera. For example, with a field of view twice that of WFPC2 (Hubble's current wide field instrument), ACS's wide field camera will conduct broad surveys of the universe. Astronomers will use it to study the nature and distribution of galaxies, which will reveal clues about how our universe evolved. The high-resolution camera will take extremely detailed pictures of the inner regions of galaxies. Among its many tasks will be to search neighboring stars for planets and planets-to be, and to take close-up images of the planets in our own solar system. The solar blind camera, which blocks visible light to enhance ultraviolet sensitivity, will focus on hot stars radiating in ultraviolet wavelengths.

A light year



light year is a way of measuring distance. That doesn't make much sense because "light year" contains the word "year," which is normally a unit of time. Even so, light years measure distance.
You are used to measuring distances in either inches/feet/miles or centimeters/meters/kilometers, depending on where you live. You know how long a foot or a meter is -- you are comfortable with these units because you use them every day. Same thing with miles and kilometers -- these are nice, human increments of distance.
When astronomers use their telescopes to look atstars, things are different. The distances are gigantic. For example, the closest star to Earth (besides our sun) is something like 24,000,000,000,000 miles (38,000,000,000,000 kilometers) away. That's the closeststar. There are stars that are billions of times farther away than that. When you start talking about those kinds of distances, a mile or kilometer just isn't a practical unit to use because the numbers get too big. No one wants to write or talk about numbers that have 20 digits in them!
So to measure really long distances, people use a unit called a light year. Light travels at 186,000 miles per second (300,000 kilometers per second). Therefore, a light second is 186,000 miles (300,000 kilometers). A light year is the distance that light can travel in a year, or:
186,000 miles/second * 60 seconds/minute * 60 minutes/hour * 24 hours/day * 365 days/year = 5,865,696,000,000 miles/year
A light year is 5,865,696,000,000 miles (9,460,800,000,000 kilometers). That's a long way!
Using a light year as a distance measurement has another advantage -- it helps you determine age. Let's say that a star is 1 million light years away. The light from that star has traveled at the speed of light to reach us. Therefore, it has taken the star's light 1 million years to get here, and the light we are seeing was created 1 million years ago. So the star we are seeing is really how the star looked a million years ago, not how it looks today. In the same way, our sun is 8 or so light minutes away. If the sun were to suddenly explode right now, we wouldn't know about it for eight minutes because that is how long it would take for the light of the explosion to get here.

1 light year is the distance light can travel in vacuum in one year’s time. This distance is equivalent to roughly 9,461,000,000,000 km or 5,878,000,000,000 miles. This is such a large distance. For comparison, consider the circumference of the Earth when measured at the equator: 40,075 km.
You can even throw in the center to center distance between the Earth and the Moon, 384,403 km, and that value would still pale in comparison to 1 light year. Pluto, at its farthest orbit distance from the Sun, is only about 7,400,000,000 km from the center of our Solar System.
Because of its great scale, the light year is one of the units of distance used for astronomical objects. For example, Andromeda Galaxy, which is the nearest spiral galaxy from the Milky Way, is approximately 2.5 million light years away. Alpha Centauri, the nearest star system from our own Solar System is only 4.37 light years away.